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SUMMARY

Avrami's model of the kinetics of crystallization is the
generally accepted starting point for the analysis of nucle-
ation and primary crystallization in the growth step. However,
in most cases, the experimental situation is complicated by
additional phenomena such as incubation and secondary growth
although, as yet, no simple analytical method, that takes these
effects in to account, has been described. An iterative pro-
cedure that deals with this problem is presented here and is
based on the observation that, in most cristallization exper-
iments, a plot of the kinetic data shows an inflexion point,
the ordinate value of which is only marginally influenced by
incubation and secondary crystallization. The reliability of
the method s demonstrated by both simulation and experiment.

INTRODUCTION

A new, simple, numerical method for the evaluation of the kine-
tics of polymer crystallisation has been elucidated. The theo-
retical basis of this method was originally described by Avrami
(1) and others (2-6) for the ideal case where the growing mor-
phological units (spherulites) do not interfere with one an-
others growth kinetics and show no incubation or secondary
cristallization phenomena. This model separates the nucleation
and growth steps: nucleation is considered to occur either ther-
mally, in which case the number of nuclei changes with time, or
spontaneously, under sufficient supercooling of the melt, in
which case the number of nuclei does not change with time. The
growing unit is a complex entity containing crystal lamellae and
amorphous material and growth kinetics may be limited by either
the rate of incorporation of molecules into the crystalline
phase or by the diffusional transport of the molecules to the
crystalline-melt interface. A simple mathematical description

of the kinetics can be derived from this model:

X(t) = T-exp(-kt) (n
where X(t) is the degree of crystallinity given by the ratio of
the volume of crystallized material at time t to the total vo-
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lume, k is the cristallization rate constant and n is the Avrami
exponent. The Avrami exponent contains information about the mode
of nucleation and growth control and about the geometry of the
primary crystallization (i.e. whether the growing unit is of rod,
disc or spherical shape). In most cases, following initial super-
cooling (and the transformation of the melt into a metastable
state), some incubation time (1) is required prior to isothermal
polymer crystallization. To take this into account, the original
Avrami equation must be modified: X(t) = 1-exp(-k(t-t)") (2)
The incubation time depends on the experimental conditions such
as the degree of supercooling employed, and on the purity of the
sample. A further complication in the polymer crystallization
process is the occurence of secondary crystallization, the eff-
ects of which are superimposed upon the function X(t) and its
contribution X'(t) must be deconvoluted from the observed func-
tion X''(t): X''(t) = X'(t)+X(t) " (3)
in order to apply eq{2) to the main crystallization process. In
reality, a property, I(t), sensitive to the degree of crystalini-
ty (such as volume, specific heat, optical retardation etc) is
measured. The degree of crystallinity, X(t;) is defined as:

X(t) = (1(t§)-1(0))/(1(=)-1(0)) (4)
The purpose of the present paper is to describe a method for the
determination of T, X(t) and hence n.

BASIS OF THE EVALUATION

The time difference between subsequent observations of I, Atiis
given by: tj = t'j,-t'y with t'y = ty-1 (5)
Inverting (2) makes it obvious that t is a function of X,n,k and
T wheras At is only a function of X,n and k. The time difference
At; can be calculated without a priori knowledge of the incuba-
txon time tT.The quotient Qi = Ati/Atisn (6)
is independent of k and thus on]y a funct1on of X and n and can
be calculated from eqs (2), (5) & (6):

-1
1
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The form of this equation does not allow an explicit solution for
n which must be found by iteration.

The assumption has been made that secondary crystallization has
no influence on the crystallization progression curve in the
neighbourhood of the infiexion point X(tw) so that

X(ty) = X' (ty) (8)
Bearing in mind that the criterion .n>1 must be fulfilled (other-
wise there exists no inflexion point), the value of the infle-
xion point t*y = ty-t can be calculated from eq (2) as:

d2(1-x(t")) -0 (9)
dtl ’:t‘w

e
With t' = T and resolving eq (9) for t'y gives
t'y = (n- l/n )1/“

(10)
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and by substitution in eq (2), it follows that X(ty) is only a
function of n: X(ty) = T-exp((1-n)/n) (1)

NUMERICAL METHODS FOR THE CALCULATION OF THE KINETIC PARAMETERS

Using Newton's approximation ny,q = m-Q(ny)/(dQ(ny)/dng)  (12)
an estimated value of n can be found. This value when substituted
into eq (11) enables an iteration. The iterative procedure is re-
peated until the difference between succesive values of ny and
ng+1 is sufficiently small, giving a final estimate of n.

EXPERIMENTAL METHODS

Isothermal crystallization kinetics were followed by observing
the increase in birefringence upon crystallization using a Zeiss
Photopol III polarization microscope equipped with a Mettler
FP82 hot-stage. The degree of crystallinity was defined (eq (4))
as being proportional to the light intensity transmitted I(t) by
the sample, which was inserted between closed polarizers. Light-
intensity was measured with a photometer and the output current
amplified by a Mettler FP80 processor. The same processor was
used to control the temperature of the hot-stage. The crystalli-
zing melt of a sample of highly purified polypropylene was sand-
wiched (thickness about 10um) between a microscope slide and a
cover siip, conditions under which growth can take place in 3
dimensions. In a typical experiment the temperature of the sample
was cooled from 200°9C to 1280C at a rate of 100C/min. Numerical
calculations were performed on a programmable pocket calculator.

RESULTS

Table 1 1ists the results of applying the iteration procedure to
real data using the starting parameters n1=2.242, ky=5.546E-8
and I(x)=51.553

Table 1:
Input data Results
I(ty) ty X(t3) X(tp) X(t3)| n(t) k() I{=) t
[mV] [sec] start start start [sec™}] [mV] [sec)

22.5 990 0.1 0.2 0.3 2.44 4.96E-8 50.4 197

0.1 0.25 0.5 2.47 4.14E-8 50.1 192

21.0 960 0.1 0.2 0.3 2.53 2.84E-8 46.2 183
0.1 0.25 0.5 2.65 1.24E-8 45.2 162

25.0 1045 0.1 0.2 0.3 2.29 1.21E-7 58.0 220

0.1 0.25 0.5 2.15 3.18E-7 60.3 249
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Figure 1: The shape of the Avrami function for different
values of n in a 3-dimensional representation
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Figure 2: The inflexion point of the kinetic curve is indepen-
dent of the crystallisation rate constant k.
1: k=1.00E-8
2: k=1.00E-9
3: k=1.00E-10
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Figure 3: The dependence of X(ty) upon the Avrami exponent n
plotted according to (eq 11).

Figure 4: The influence of n and k on the position of the
inflexionpoint t'y (eq 10).
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Figure 5: The influence of varying the exponent n on the basic
form of the Avrami curve (eq 1). Curves 1,2 and 3 are
calculated for n=2.80, n=3.00 and n=3.20.

Figure 6: Simulated values of k by given n and .
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Figure 7: Typical experimental values from the crystallization

of polypropylene under isothermal conditions (120.89C).

(See table 1)
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Figure 8: The influence of the selected I(ty) values on the shape
of the final portion of the curve in Figure 7.

Curve T: I{ty)=25.0mV at 1045sec

Curve 2: I(ty)=22.5mV at 990sec

Curve 3: I(ty)=21.0mV at 960sec
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Figures 1-6 were obtained by simulation of experimental data.
The basic form of the Avrami curve is shown in figs. 1, 2 & 5.
Fig. 2 demonstrates that X{tw) is independent of k. In contrast,
figs. 3 & 4 show that both X(ty) and t'y are dependent upon n.
The influence of varying t© and n on k is depicted in fig. 6. In
fig. 7 the results of a typical crystallization experiment are
shown along with the calculated curve with the starting values
of X(t1), X(t2), X(t3) set at 0.1, 0.2, 0.3 respectively and
with I(ty) = 22.5. Fig. 8 shows the effect of varying I(ty) on
the shape of the final portion of the progress curve.

DISCUSSION

It has been assumed that the measured intensity I(t) is propor-
tional to the degree of crystallization although this only holds
in the case of 2-dimensional crystallization. During 3-dimensio-
nal crystallization I(t) is proportional to the 2-dimensional
projection of the growing crystallites in the plane of the mi-
croscope objective. This may lead to significant over-estimation
of the degree of crystallinity in the initial phase of the kine-
tic curve, especially when the sample thickness is greater than
size of the spherulites. The value of the experimentally deter-
mined exponent n, of around 2.5, can be explained by athermal
nucleation at the high cooling rates used and by the dimensio-
nality (2 to 3) of the growing crystals at the sample thickness
employed.

The fact that no secondary crystallization is apparent at the
inflexion point ty is critical to the success of this method as
is the selection of appropriate starting values of X(t;) which
should be in a range of tj where the determination of I{ti) is
accurate and unaffected by secondary crystallization.
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